3.17 \(\int (b \sec (c+d x))^{3/2} (A+C \sec ^2(c+d x)) \, dx\)

Optimal. Leaf size=110 \[ -\frac {2 b^2 (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 b (5 A+3 C) \sin (c+d x) \sqrt {b \sec (c+d x)}}{5 d}+\frac {2 C \tan (c+d x) (b \sec (c+d x))^{3/2}}{5 d} \]

[Out]

-2/5*b^2*(5*A+3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d/cos
(d*x+c)^(1/2)/(b*sec(d*x+c))^(1/2)+2/5*b*(5*A+3*C)*sin(d*x+c)*(b*sec(d*x+c))^(1/2)/d+2/5*C*(b*sec(d*x+c))^(3/2
)*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 110, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {4046, 3768, 3771, 2639} \[ -\frac {2 b^2 (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 b (5 A+3 C) \sin (c+d x) \sqrt {b \sec (c+d x)}}{5 d}+\frac {2 C \tan (c+d x) (b \sec (c+d x))^{3/2}}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[(b*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2),x]

[Out]

(-2*b^2*(5*A + 3*C)*EllipticE[(c + d*x)/2, 2])/(5*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*b*(5*A + 3*C
)*Sqrt[b*Sec[c + d*x]]*Sin[c + d*x])/(5*d) + (2*C*(b*Sec[c + d*x])^(3/2)*Tan[c + d*x])/(5*d)

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 4046

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> -Simp[(C*Cot[
e + f*x]*(b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x]
/; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rubi steps

\begin {align*} \int (b \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx &=\frac {2 C (b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d}+\frac {1}{5} (5 A+3 C) \int (b \sec (c+d x))^{3/2} \, dx\\ &=\frac {2 b (5 A+3 C) \sqrt {b \sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 C (b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d}-\frac {1}{5} \left (b^2 (5 A+3 C)\right ) \int \frac {1}{\sqrt {b \sec (c+d x)}} \, dx\\ &=\frac {2 b (5 A+3 C) \sqrt {b \sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 C (b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d}-\frac {\left (b^2 (5 A+3 C)\right ) \int \sqrt {\cos (c+d x)} \, dx}{5 \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\\ &=-\frac {2 b^2 (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 b (5 A+3 C) \sqrt {b \sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 C (b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.44, size = 184, normalized size = 1.67 \[ \frac {4 i e^{i (c+d x)} \cos ^3(c+d x) (b \sec (c+d x))^{3/2} \left ((5 A+3 C) \left (1+e^{2 i (c+d x)}\right )^{5/2} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i (c+d x)}\right )-3 \left (5 A \left (1+e^{2 i (c+d x)}\right )^2+C \left (8 e^{2 i (c+d x)}+3 e^{4 i (c+d x)}+1\right )\right )\right ) \left (A+C \sec ^2(c+d x)\right )}{15 d \left (1+e^{2 i (c+d x)}\right )^2 (A \cos (2 (c+d x))+A+2 C)} \]

Antiderivative was successfully verified.

[In]

Integrate[(b*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2),x]

[Out]

(((4*I)/15)*E^(I*(c + d*x))*Cos[c + d*x]^3*(-3*(5*A*(1 + E^((2*I)*(c + d*x)))^2 + C*(1 + 8*E^((2*I)*(c + d*x))
 + 3*E^((4*I)*(c + d*x)))) + (5*A + 3*C)*(1 + E^((2*I)*(c + d*x)))^(5/2)*Hypergeometric2F1[1/2, 3/4, 7/4, -E^(
(2*I)*(c + d*x))])*(b*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2))/(d*(1 + E^((2*I)*(c + d*x)))^2*(A + 2*C + A*
Cos[2*(c + d*x)]))

________________________________________________________________________________________

fricas [F]  time = 0.43, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (C b \sec \left (d x + c\right )^{3} + A b \sec \left (d x + c\right )\right )} \sqrt {b \sec \left (d x + c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

integral((C*b*sec(d*x + c)^3 + A*b*sec(d*x + c))*sqrt(b*sec(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (C \sec \left (d x + c\right )^{2} + A\right )} \left (b \sec \left (d x + c\right )\right )^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(b*sec(d*x + c))^(3/2), x)

________________________________________________________________________________________

maple [C]  time = 1.42, size = 670, normalized size = 6.09 \[ -\frac {2 \left (1+\cos \left (d x +c \right )\right )^{2} \left (-1+\cos \left (d x +c \right )\right )^{2} \left (5 i A \sin \left (d x +c \right ) \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )-5 i A \sin \left (d x +c \right ) \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )+3 i C \sin \left (d x +c \right ) \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )-3 i C \sin \left (d x +c \right ) \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )+5 i A \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sin \left (d x +c \right )-5 i A \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )+3 i C \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )-3 i C \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )+5 A \left (\cos ^{3}\left (d x +c \right )\right )+3 C \left (\cos ^{3}\left (d x +c \right )\right )-5 A \left (\cos ^{2}\left (d x +c \right )\right )-2 C \left (\cos ^{2}\left (d x +c \right )\right )-C \right ) \left (\frac {b}{\cos \left (d x +c \right )}\right )^{\frac {3}{2}}}{5 d \sin \left (d x +c \right )^{5} \cos \left (d x +c \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x)

[Out]

-2/5/d*(1+cos(d*x+c))^2*(-1+cos(d*x+c))^2*(5*I*A*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*El
lipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*sin(d*x+c)*cos(d*x+c)^3-5*I*A*sin(d*x+c)*cos(d*x+c)^3*(1/(1+cos(d*x+c)
))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)+3*I*C*sin(d*x+c)*cos(d*x+
c)^3*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)-3*I*
C*sin(d*x+c)*cos(d*x+c)^3*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticE(I*(-1+cos(d*x+c
))/sin(d*x+c),I)+5*I*A*cos(d*x+c)^2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticF(I*(-1
+cos(d*x+c))/sin(d*x+c),I)*sin(d*x+c)-5*I*A*sin(d*x+c)*cos(d*x+c)^2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+co
s(d*x+c)))^(1/2)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)+3*I*C*sin(d*x+c)*cos(d*x+c)^2*(1/(1+cos(d*x+c)))^(1
/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)-3*I*C*sin(d*x+c)*cos(d*x+c)^2*
(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)+5*A*cos(d
*x+c)^3+3*C*cos(d*x+c)^3-5*A*cos(d*x+c)^2-2*C*cos(d*x+c)^2-C)*(b/cos(d*x+c))^(3/2)/sin(d*x+c)^5/cos(d*x+c)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (C \sec \left (d x + c\right )^{2} + A\right )} \left (b \sec \left (d x + c\right )\right )^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(b*sec(d*x + c))^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,{\left (\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + C/cos(c + d*x)^2)*(b/cos(c + d*x))^(3/2),x)

[Out]

int((A + C/cos(c + d*x)^2)*(b/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}} \left (A + C \sec ^{2}{\left (c + d x \right )}\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sec(d*x+c))**(3/2)*(A+C*sec(d*x+c)**2),x)

[Out]

Integral((b*sec(c + d*x))**(3/2)*(A + C*sec(c + d*x)**2), x)

________________________________________________________________________________________